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A better least-squares method when both variables have uncertainties
Matthew Lybanon
Ocuan(ography Diunmi. Naval Ocean Recarch and DevelopmentA ctnitv. .STIL. MS 39529

iReceixed 27 December 1982: accepted for publication 29 April 19831

The generalized least-squares problem. in which an observation vector satisfies a set of equations
that may be nonlinear and implicit, and all components may be subject to errors, can be solved as a

constrained minimization problem. When the analysis is specialized to the important case of one-
dimensional cur e fitting to measurements where both variables contain errors, it becomes similar
to the effectix e \ ariance met hod. A standard least -squares computer program can be used to apply
the new method: the results are superior to these of the effective variance technique A simple
geometrical construction illustrates the principles of the new method.

1. INTRODUCTION other work, because that supports the contention that such

A recent paper b\ Jeffers' considr'd thie generalized methods are not well known.i
The work by Jefferys is highlighted here because the ap-

least-squares problem: A %,ector of observations satisfies aset f euatons hatma~he onliearandis nt ncesar- proach is general, and the formulation is concise and comn-
set of equations that nia.\ he nonlinear and is not necessar- plete. In the next section the results presented by Jefferys
ilv sobable in the explicit form _, l fix : all of the compo- will be summarized, using the same notation. Following
nents (it the vector of observations miav be subject to mea- that, it will be shown how the formalism, when applied to
surcment errors. The standard least-squares regression an important special case, results in an algorithm that has
technique, even ,.,hen extended to nonlinear models. con- several advantages. That algorithm has pedagogical and
taliN thc i assuii,-ion that v is free of error, this is practical value because it is particularly easy to use, gives
hardly ever true in practice. better results than "effective-variance" techniques,' and

The method that Jefferys presents is more general than has a convenient geometrical interpretation.
the conventional method and avoids the latter\s inadequa-
cies in formulation. Also. Jeffers makes two very impor- II. FORMULATION
tant points: A. General

I . The ,tandard method's assumption that one variable
is subject to error and the other is error-free, when that Jefferys' formulated the least-squares problem as the
assumption is inappropriate, produces biased estimates of minimization of a particular quadratic form.
the fit parameter,,. Generalizations to higher dimensiomi-
lit% in all sariables are included.i The bias is given explicitlIy
b, Jefferys for the case of a straight line through the origin subject to the constraints
"herc x. and not Y. contains all the measurement uncer- fix .il - 0, (21
taints .

i2t The major difference between the standard least- glil 0. 3)

squares solution procedure and the generalized method is In these equations x is a vector of observations with covar-
that in the latter the expressions used in solving for the idnce Matix lassuned kno ii at least up to a constant fac-
result must be recomputed each iteration using the best torl'. The superscript "t "" in Eq. 11I indicates transpose.
ii.c., revised) estimate of the observation vector as well as Equation 12) is a set of equations oJcondition, in which f is a
impro,,-'d estimates of the fit parameters. This is a natural vector function of its arguments. v is the vector of actual
outgrowth of the notion that the least-squares process is a residuals li.e.,x = x - v would have been the actual obser-
method of improving the observations via the mathemat- vations if there were no errors), and a is a vector of param-
ical model. However. the point may not be obvious if one eters. The same v appears in Eq. (11. Equation (3) is a set of
takes the common view of least squares solel as a method constraints on the parameters a. In all equations, a caret (/\. I
of parameter determination, above a symbol denotes an estimate of the quantity repre-

Other authors have treated the generalized least-squares sented by that symbol.
problem: some have published iterative algorithms for fit- A constrained minimization problem can be solved con-
ting arbitrary functions to observation vectors all of whose veniently by the method of Lagrange multipliers, and that
components mav possess uncertainty las does Jefferys). ' " is the approach Jefferys chose. The statement of the prob-
The principles have been discn,,ed hefore in the American lem becomes: Find estimates , and i of v and a, and & and t.

Journal of Physics '" Yet those principles and techniques of the Lagrange multiplier vectors X. and t. which mini-
seem not to be well-known. In particular, the results ob- mize
tained by Jefferys' are remarkably similar to those of Britt S f,ilt + k4)
and Luecke." Howkever, Jefferys appeared to be unaware of
the existence of the Britt-Luecke paper, or indeed of any of where x + i has been abbreviated by i. The minimization

the other works referred to by the present paper except Ian produces the normal equations

earlier edition of i the book by Deming. (There is no inten- (r 'j, - r t i, i)llA 0, (5a)
tion to imply anything more than that the respective auth-
ors approached the problem in the same way. l, ,", ti Ii 0, SbI

..,t 'Kat J-'ffery. \kas apparently not aware of the fili 0 (5cl

22 Am J Phys 52 (1 ), JanuarN 1984 c I')4 American AssocLatm iitn P ,s , I eacher, 22



gii- 0. 15d) lagain, it must be emphasized that x will change, along

In these equations the subscripts ii denote partial dera- % with some %ector a of initial parameter -guesses'' for fi. The

ti,,es with respect to the indicated variables. The symbol f solution process consists of solving Eq. (I I 1 for 6. using the

for instance is very coipact notation for the matrix whose current estimates of everything, then substituting the re-i.j elemen t is df , p e lotai f th. nalaed at ix k. suiting b into Eq. 116) to obtain i_.,,. Equations 1131 andThe solution to Eqs. i5a-i 5d ,,will give the solution to the 151 then give improved values of i and i. This constitutes
posed problem, if it eists. How ewer, thcse eqsuations ar one iteration Successive iterations are performed, if neces-goerolie. Th nextstep in%% er ese eqatpronah i sary. until a set of convergence criteria are met. or until ageneral nonlieTho ne ariext step Jeffer.s' approach is to prespecified large number of iterations are performed with-approximate solution. Let the approximate solution be de- out reaching convergence. The latter method of stopping
noted by islui and let the linear estimate of the corrections the calculation may be necessary for one of tio reasons: If

be denoted b,, 4.i. (The reader should note in particular the problem is sufficiently complex and the initial estimates

that the solution includes all components of x, as -,.ell as ihe are too far away, this linearized algorithm may not con-

parameters a, and the distiction between i and €; should be verge to the solution at all. Or even if it does converge, the

clear.) Then Eqs. 5a)i 5d) become finite ilimitedi precision of the machine may not permit
satisfaction of a severe convergence test.

o , i , 0, 16a) The reason for duplicating Jefferys" formulation here in
.'.+ gX = 0. ibl such detail is so that we can go from the general to thespecific in the next section with a minimum of effort but

f, i - f., = 0. tic, with confidence in the validity of the results. The resulting

g h = 0. od) algorithm will be amenable to a particularly simple imple-
mentation.

At this point, in anticipation of the special case to be dis-

cussed in the next section, the set of constraints on the
parameters [Eq. (31] will he dropped. This causes a slight
simplification in the equations just stated: the second term B. One-dimensional curve fitting
in Eq. ib and all of Eq. id vanish, and the Lagrange The preceding section has been entirely general. It treat-
multipliers X are no longer needed. ed the least-squares fitting of any relationship of the form

Continuing the solution, if Eq. =a is soled for . the fix) 0.where x is a vector of observations (and the depen-
dence on the adjustable parameters has been suppressed).

= - f - 'f' i. f7) By far the most frequent application of least squares is to

When this, in turn. is substituted into Eq. t6ci, cases in which the functional relati(,inship has the explicit
i- f., - ff, f jr., = 0, form

which can be solved for the Lagrange multipliers y= ux, (17)

S= %v4f f,, i -~ f, bi. (9)
where the weighting matrix W is where both x andy are scalars. There is some slight confu-

sion in notation: the components of x for the ith observa-
(101 tion are (x,,y,)(i = 1,2..N, where N, is the number of ob-

The (simplifiedi Eq. t6bi may now be solved to obtain the servations). The vector function f(x) has N components,
reduced normal equation f = ux, .al - y,. The vector of parameters a has mn compo-

nents. We assume uncorrelated measurements ix,,y), so
fr. Nvfa rf % 6 (11i the matrix a is diagonal.

\x here A few of the matrices will be displayed explicitly, along
> i- fr,i. (121 with their dimensions:

The solution to Eq. I I i can be used to "update" the param-
eter estimates./ 6o0  0 0 ... 0]

All- = i - . il3i 0 0', 2  0 ... 0

But in order to complete the iterative process, it is also '=[ 0 0 O\,2 ." 0 )2Nx2N), (18)
necessary to update x, 0 0

X 1 4.. L 0 - .( 4 0 0 ... o _, J

Equation 16a) may be used to find i. After substituting lt
from Eq. 191 and performing ;ome manipulations, the final u 1 0 0 0
result is A

05, fX-3u. - 0.(ISX 2N)0i ...= K - 0,..... 151Ci
where '= dx -0

This is equivalent to Eq. (13). 0 0 0 0 . .Jefferys suggests using i = x as an initial estimate of x (19)

23 Am. J. Phys.. Vol. 52. No. 1, January 1984 Matthew Lybanon 23



du, du, du,

da dOa 1a..
du. du. u. oo0

- da, da. da,, .\ in. 120) 0Y

du, du dIu ,

L do do. do,, D

The partial derivatives in Eqs. (191and 1201are ealuated at
.i.ii at each stage of the iteratiN e calculation. The vector of .
actual residuals is

I I

/ I

VI

InEq. 1211i,' = .i. 
Using these relations, it can be seen that f. af, is now an

N - N diagonal matrix whose ith diagonal element is
IOu /dx vo-. I o . Consequently, Eq. t lOi shows that I

the \Neighting matrix W is also an N N N diagonal matrix, I

whose ith diagonal element is

W =122)
Fig. I Least-squares geornct, in transforned space kith unit ,aranc'e,

And the vector , defined in Eq. 112), is the N " I vector
whose ith element is

(y, j uli, u IX, .1 123 12 The weights in the W matrix are of the formb.--, W , = [(du,,)-'x .+, .Q723dx. V w,2

[Once again, the partial derivatives in both equations are ax, + .,- (27)
evaluated at (.ai.] These are the effective variance weights.' They have been

Reference to Fig. I (which suppresses the index it shows shown previously to be the appropriate weights to use for
that tis the negative of the quantity shown as d (i.e., d, ): least squares when both x andy observations are subject to

= (d, -24) error."'' However, the effective-variance algorithm de-
Note furthermore that. to a good approximation, scribed in those references neglected the other "exception"

above. Consequently, it has been found that it almost never
-R, = ux, ,- y,. (25) gives an exact least-squares solution. '"

Figure 1 depicts the region near one observation in a Because the method derived in this section is formally
space with (x,y( normalized so that the variances at that identical to standard least squares, with the exceptions not-
point are unity. From Eqs. J 1I and 121) it can be seen that the ed above, it has the very important practical advantage that
sum of squares S,, reduces to a sum of terms of the form it can be implemented simply by making slight modifica-
ID,-' where the line of length D, is a perpendicular from tion to existing curve fit computer software. The standard
(x,y) to the curve at (.i,uJi)). This provides a convenient method effectively assumes that there are no x residuals-
geometrical interpretation of generalized least squares for in other words, that there is no uncertainty in the x obser-
this important special case. vations. Consequently, it is not applicable when there are x

It is now possible to carry out Jefferys'. solution proce- uncertainties. When it is applied in such cases it produces
dure. T1'e first step is to solve Eq. I 11) for h. In the present biased fits, as Jefferys showed.' However, with the relative-
case. ly minor changes indicated above, a computer program

athat was designed for the standard method can be used for
(f.Vwf.), = W, -- , (26a) the general problem.

do, da a The approximation of replacing d, by R, still remains, so

du d u,, it may appear that the result of all the foregoing algebra
(f'W4(1  - " -u--W d' - W U,R,. (26b) was just to replace one approximate method-effective

da , da variance-with another. But it will be seen that the new

Consequently, with the second form ofEq. (26bl, Eq. II 1) is method is a much better approximation than the effective
exactly the equation obtained for the successive differential variance technique, while retaining the l'itter's ease of im-
corre t;cns to the parameters in the standard leaqt-sqnarcs plementation. Furthe,, Fig. I provides a consistent geo-
method, with two exceptions: metrical interpretation of the method that is of pedagogical

(l Al! of the partial derivatives, with respect to both x value. The use of the Figure will continue below.
and a, are evaluated at (iij instead of (x,il. The one missing element is a method of improving the x

24 Am. J. Phys.. Vot. 32. No. 1. January 1984 Matthew Lybanon 24



estimates, in order that we may evaluate the partial deriva- Table 1. Pearson', data and York's ejghr.

tives at i rather that x. From Eqs. (7) and 114)-- 16),

i= v - orf = x - i - crfWV16 + fr. 1281 . 14"

Equation 1281 is for the general case. If we now- specialize to 1 0. 1 (XX. 5. 4 1 0

one-dimensional curve fitting and drop the f4 b term, which 2 (19 10oX). 5 4 I 8

is a first-order correction to the "updated" i i.e., i + , +3 5(K).) 4,4 4.)

then the correction to x, is 4 2t X) 4) 5)

5 3.3 2(X)O 35 20
,5.u b- -. 0 -- , 44 8 0 7 2:0

.7 5.2 (70A 2 X 700

t. 20 2.S 7oo
x - 0, 9 w5 I .4 I6 X).)

d tU. 14 )u 7.4 l.0 15 5M) j

* 1, all 129)
L dx I dent variable. With the weights (221. Eqs. 12ial and 126b

•s ,here h stands for ui, .i). If we now define the separate x give the factors which go into Eq. i I I for the parameter

and v weights updates. In this case Eq. (I I is exactly that used to give

. / 3 parameter updates in standard least squares, except that
,(301 the partial derivatives are evaluated at the improved.i, and

then Eq. 29I becomes the special choice of weights 122) is used. Equation i 11) is
, iterated until a convergence test is passed or an iteration

, ,+W, x, - ' limit is reached. The updates will change the weights, so
' x, the entire procedure (variable updates and parameter up-

d,) ],dates is iterated until a suitable convergence criterion.
SW, (31) such as the effective variance criterion proposed by Clut-

ton-Brock, 4 is satisified. It may also be desirable to check
Figure I provides an immediate geometrical interpreta- the convergence of the independent variable estimates. The

tion. Assume that cr, =or, = 1. iAgain, we suppress the overall sum of squares of residuals is another candidate for
index i. Then the line of length D is perpendicular to the a convergence check, since that is what is supposed to be
cur).e and has the equation minimized.

Y()I --- Y IX - x32 III. EXAMPLES AND COMPARISON OF
METHODS

Now suppose that we have an .i that is an approximation

and wish to find a better one. i. The curve near x,, is given The method described in the last section was pro-
bh, to first order, grammed and applied to several cases. The same program

("built" around a standard least-squares programl was
ulx.i) - ul,.i) - . 33 used to perform least squares and effective variance fits.

dx The results are summarized below, along with publisheds

where (V = x - ,,. The needed correction from . to x is exact generalized least-squares results.
given by the simultaneous solution of Eqs. 132) and 1331. The cases consisted of polynomial fits to data given by
The result is Pearson, who analyzed the problem of performing linear

( Uu du 34 fits to measurements with error in all variables as long ago
6 .i -- r a r ) - x 2 , , 1 . t 4 as l190 1. " T h e w eig h ts [cf. E q . (30 1] used co n sisted o f tw o" dx sets: unit weights on both x and y, all points, and a set of

When the variables are "unnormalized" Itransformed to weights used with Pearson's data by York. " Pearson's data
arbitrary 'ariances and allowance is made for the slight and York's weights are listed in Table I.
changes in notation, Eq. (34) becomes identical to Eq. (31). Table II shows the results of fits of a straight line,

Following Jefferys' suggested algorithm of the preceding v = a, + ax, to the data of Table 1. S was calculated from
section, a sketch of the solution procedure for one-dimen-
sional cur, e titting when x and v contain measurement er- S= W,, , - X, 2 + W,,I , -y-], (351
ror is as follows: Eq. 131) gi\ es the updates to the indepen- ,

table li Linear fits to Pcarson's data \,ith York's %,eighl'

Calculated Standard Effectie Nov% Exact

alue least squares arjancc algorithr slution

u 0 I(X1()145 5.39) 5212 5 4799102 5 5.47 1)1022
a 0 l 610812967 0.403448885 0,480533415 0,480533407

S 16 285260)46 1 495644908 1I1 X06353 1941 I. 3 53 1141

25 Am. J Phys., %'o. 52, No 1. January 1984 \,IattheA Lybanon 25



Ta b l e I 1. P o l y n o m i a l fi t s t o P e a r s o n 's d a t a Ait h u n i t %ei g h t s o r Y o r k ' , hei g h t s

PoI, nomial Standard Effectir e Ne.k Exact
dlegree Weights least squart 'ariaince algorithm solution

I "r O.6201 I 9636654 0 ()2011 96554 0.6185727504437 0,618 572759437

SYork lo,28526004h I 195t44908 I I 8663531941 1I 8663531941
U 1 nit 048731948683 0.486175535205 0.4851 5548144) 0485152486927

York II 8832034403 10, 51945 1 104878374496 10.48690401577

5 Unit 0.453(XX)717248 0.453(M)307S6O 0 450329966231 0 45032567217

which is equivalent to Eq. I I I except for the factor of 1/2. ment uncertainty, because the underlying assumptions are
The values x are calculated directly as a by-product of the violated and the method produces biased estimates of the
calculation for the fits by the new algorithm and the exact fit parameters.' The effective variance technique, which
soittin For the other fits, Eq. 311 was used to find thei, has been recommended in this Journal for use in such
consistent with the fit parameters, in order to be able to cases,- " is usually better but is still not exact. A new meth-
calculate S. The results show that the standard least- od, which can be obtained as the result of specializing an
squares solution is seriously in error and the effective vari- analysis of the generalized least-squares problem' to the
ance solution is substantially better, but the result of the case of one-dimensional curve fits to uncorrelated observa-
new algorithm is identical to the exact solution within the tions, gives better results but is no harder to use. One slight
precision of the calculation. The latter happens because no approximation makes the new method formally identical
approximation is made by the new algorithm for linear fits, to the effective variance approach with one enhancement,
since d. is exactly the same as R,. The effective variance so it shares the latter method's advantage that it can be
algorithm is not exact: since 3u, /a, = x. the failure to applied using a standard least squares computer program.
update x in the effective variance calculation prevents the Tests prove that the new method is exact for linear regres-
normal equation from producing a true minimum even sion twhile the effective variance method is no better than
though the weights are formally correct, standard least squares when all the x uncertainties are

Table Ill ,hows the values ofSobtained using each of the equal and all the y uncertainties are equal) and performs
fit procedures for various polynomial fits to Pearson's data better than the effective variance method in other cases.
with either unit weights or York's weights. An interesting There is a convenient geometrical interpretation; in a sense
situation occurs in the case of straight-line fits with unit the new method is completely described by Fig. 1.
weights. The salue of S for the effective variance fit is the The new method is genuinely easy to apply using a stan-
same as that for the standard least-squares fit. The two fits dard least-squares algorithm. A microcomputer imple-
are actually the same: the sets of coefficients are identical, mentation can be used to fit arbitrary functions. The author
also. This result is not unexpected. Chandler' showed has programmed the method for straight lines on the Texas
that, for straight-line fits with o,,, = oa and o-,, = -for all i, Instruments TI-59 programmable pocket calculator, using
the effective variance algorithm gives the same result as the calculator's built-in straight-line-fit capability. That
standard least squares. That solution is seen to be less than program is available on request.
optimum, but the result of the new algorithm is again iden- The method introduced in the paper is an outgrowth of
tical to the exact solution. procedures developed for calibration of the measurements

For polyonial fits of higher degree. the new algorithm is made in Skylab Experiment S-233, photographic photome-
not exact. It is very nearly so, however, and it outperforms try of Comet Kohoutek observations.
the effecti'e %ariance algorithm in every case. On a linear
scale which measures the percentage decrease in S from the
standard least-squares result to the exact solution, the ef-
tecime variance method attained an average "score" of 'W. Ii. Jetk'r.s. Astron J. 85. 177 1980,.

48.638"% . while the new algorithm averaged 99.927%. Aw.E . Derning, Statical .djustmntbolData W'iley. Ne\ York. 19431

The relative differences between coefficient values for 'D R P(oell and J. R. Macdonald. Comput J 15, 148 1Q72,
the different methods were even greater than the corre- 'It I. Britt and R. If. uecke. Technomctrics 15. 233 1973

sponding differences between .S values. In particular, in the 'A. Celuniis. Ballistic Reearch Laboratories Report No 1658, Aberdeen

quintic polynomial fits the standard least squares and effec- Proing Ground. Mar\ land. 1973.

tie variance algorithms yielded some coefficients with sign 'A, I. SouIhwkell. Comput. 1 19, 69 1N761.

differences compared to the exact solution, while the new (, N Gerhold, Am. Y Ph s. 37. 156 [1460,
")n R Hlarker and 1. M )iana. An J Phis. 42, 224 11974,

algortthm's result agreed very closely. The new algorithm 'R If. ltuecke and If. 1. tritt. An J. Ph',s 43. 3"72 1 0?s,
has also been used successfully to fit functions that depend "J R Macdonald. An J. I'h,s. 43. 372 19751

nonlinearly on the tit parameters. However, the cases pre- "M [.hanori. Am. J FIhNs 48. 301 1080i

sented are widely used in the literature as standard test -J M t'asachotf. Ant . PhJ s 48. 8M) 19M81)i

cases, permitting easy comparison with other methods. ''K S Krane and 1. Schecter, Am. J Phys 50. X2 119821
"M. Clution-Brock. lechinomctrics 9. 201 119167,

IV. CONCLUSION "J. (Orear. An J hs 50. 912 11982
J P Chandler. lechnonirics 14. 71 i1 Q721

The standard least-squarcs procedure should not be used K Pearsotn. 'hilos Mag 2. 559, 1(M11,

to perform curve fits when both x and y contain measure- ") York. Can J P'hs, 44, 101) 11960,
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